Method for quantifying image quality in push-broom hyperspectral cameras

نویسندگان

  • Gudrun Høye
  • Trond Løke
  • Andrei Fridman
چکیده

We propose a method for measuring and quantifying image quality in push-broom hyperspectral cameras in terms of spatial misregistration caused by keystone and variations in the point spread function (PSF) across spectral channels, and image sharpness. The method is suitable for both traditional push-broom hyperspectral cameras where keystone is corrected in hardware and cameras where keystone is corrected in postprocessing, such as resampling and mixel cameras. We show how the measured camera performance can be presented graphically in an intuitive and easy to understand way, comprising both image sharpness and spatial misregistration in the same figure. For the misregistration, we suggest that both the mean standard deviation and the maximum value for each pixel are shown. We also suggest how the method could be expanded to quantify spectral misregistration caused by the smile effect and corresponding PSF variations. Finally, we have measured the performance of two HySpex SWIR 384 cameras using the suggested method. The method appears well suited for assessing camera quality and for comparing the performance of different hyperspectral imagers and could become the future standard for how to measure and quantify the image quality of push-broom hyperspectral cameras. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.54.5.053102]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Ortho-Rectification of UAV-Based Hyperspectral Data over an Agricultural Field Using Frame RGB Imagery

Low-cost Unmanned Airborne Vehicles (UAVs) equipped with consumer-grade imaging systems have emerged as a potential remote sensing platform that could satisfy the needs of a wide range of civilian applications. Among these applications, UAV-based agricultural mapping and monitoring have attracted significant attention from both the research and professional communities. The interest in UAV-base...

متن کامل

Mosaicing of Hyperspectral Images: The Application of a Spectrograph Imaging Device

Hyperspectral monitoring of large areas (more than 10 km(2)) can be achieved via the use of a system employing spectrometers and CMOS cameras. A robust and efficient algorithm for automatically combining multiple, overlapping images of a scene to form a single composition (i.e., for the estimation of the point-to-point mapping between views), which uses only the information contained within the...

متن کامل

Image Mosaicking Approach for a Double-Camera System in the GaoFen2 Optical Remote Sensing Satellite Based on the Big Virtual Camera

The linear array push broom imaging mode is widely used for high resolution optical satellites (HROS). Using double-cameras attached by a high-rigidity support along with push broom imaging is one method to enlarge the field of view while ensuring high resolution. High accuracy image mosaicking is the key factor of the geometrical quality of complete stitched satellite imagery. This paper propo...

متن کامل

A Computer Algorithm for Reconstructing a Scene from Two Satellite Images

A new camera model for transforming object space coordinates into image coordinates as affected by a push-broom sensor traveling in a straight line is described. It is shown that this transformation can be encoded in a 3 × 4 matrix M representing a non-linear Cremona transformation of object space into image space. Significantly, unlike other known models for satellite cameras, M can be estimat...

متن کامل

Multi-Source image enhancement via Coupled Dictionary Learning

Motivation. Multi and Hyperspectral remote sensing imagery provide valuable insights regarding the composition of a scene and significantly facilitate tasks like object and material recognition, spectral unmixing and region clustering, among others [1], [2]. However, current remote sensing imaging architectures are unable to concurrently acquire high spatial and spectral resolution imagery, due...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017